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In this article, we explore two types of distributed quantum machine learning (DQML)
methodologies: quantum federated learning and quantum model-parallel learning. We
discuss the challenges encountered in DQML, propose potential solutions, and highlight
future research directions in this rapidly evolving field. Additionally, we implement two
solutions tailored to the two types of DQML, aiming to enhance the reliability of the
computing process. Our results show the potential of DQML in the current Noisy

Intermediate-Scale Quantum era.

istributed quantum machine learning (DQML)
D is an emerging field that combines quantum
machine learning (QML) with distributed com-
puting. QML utilizes distinctive quantum mechanics
properties, like superposition and entanglement, to
potentially enhance traditional machine learning algo-
rithms. However, the current stage of quantum com-
puting technology, often referred to as the Noisy
Intermediate-Scale Quantum (NISQ) era, imposes limi-
tations on the size and complexity of QML models
implemented with variational quantum circuits (VQCs).
These constraints can restrict the performance and
applicability of QML methods. To address these chal-
lenges, integrating QML with distributed computing has
emerged as a strategic and forward-looking approach.
This hybrid approach aims to overcome the individual
limitations of quantum devices by harnessing distributed
qguantum computing’s power to manage and process
complex tasks across multiple quantum computing
nodes, thus amplifying the capabilities of QML models.
DQML holds promise for a diverse array of appli-
cations, especially those demanding complex com-
putations that can utilize the distinct advantages of
quantum computing. For instance, DQML can signifi-
cantly enhance molecular simulation and drug discov-
ery by enabling more efficient modeling of molecular
interactions. Furthermore, DQML can be highly benefi-
cial in fields such as financial modeling and medical
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image processing, which require the efficient handling of
large datasets while preserving local privacy. The current
cost of training even a modest QML model is quite high.
For instance, for a QML circuit of a quantum convolu-
tional neural network (CNN) that utilizes eight qubits and
includes approximately 150 trainable parameters on a
training set of 500 training instances, it may take approxi-
mately $20,000 to train a model on current quantum
computers. QML and DQML are generally not practical
at present, but in the future, we believe that they have
the potential to perform better than classical computers.

The DQML approaches, while promising, confront
unique and significant challenges distinct from those
in classical distributed machine learning. In this article,
we focus on two specific areas within the realm of
DQML: quantum federated learning (QFL) and quan-
tum model-parallel learning.

QFL is a case of distributed learning with data par-
allelism.! In this approach, multiple quantum comput-
ing nodes, each with its own local dataset, collaborate
to train a shared QML model. Each node processes its
own data independently, ensuring privacy and security
by not transferring raw data between nodes. Instead,
only model updates are communicated across the net-
work. The updates generated by each computing node
are collectively aggregated, effectively synthesizing the
insights learned from distinct local datasets. These
consolidated updates are then redistributed to each
node. This approach effectively combines computa-
tional power and data from diverse sources, enhancing
the learning process while maintaining data confidential-
ity, a key aspect in scenarios where data privacy is crucial.
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Quantum model-parallel learning is a method of dis-
tributed learning characterized by the paradigm of
model parallelism. The model parallelism in quantum
model-parallel learning is particularly advantageous for
handling large-scale QML models that exceed the com-
putational and memory capacities of individual quan-
tum nodes.? In this framework, the QML model is
partitioned into submodels, distributed across multiple
guantum computing nodes, with each node handling a
distinct submodel of the entire model. The computing
nodes process their assigned partition of data and
compute intermediate results in parallel, which are then
communicated to other nodes or a central coordinator
for generating the final outcome. The unique aspect of
quantum model-parallel learning is its ability to leverage
the individual computational strength of each node while
jointly contributing to the construction of a comprehen-
sive model. Through the distribution of computational
workload and the facilitation of parallel processing,
quantum model-parallel learning opens up new possibil-
ities for addressing more intricate QML tasks.

QFL and quantum model-parallel learning each pre-
sent unique benefits for specific QML tasks, yet they
also face several challenges. In our study, we conduct
a thorough examination of these challenges and pro-
pose potential solutions to mitigate these issues.
These challenges include quantum errors, scalability,
communication, and hardware diversity. Moreover, we
implement two specific solutions to enhance the reli-
ability of the two types of DQML approaches. In partic-
ular, a key challenge in QFL arises from the global
model being susceptible to a wide array of local errors.
Because the local models are trained under device-
specific errors, the aggregation of these error-impacted
local models can significantly compromise the efficacy
of the overall QML model. To address this issue, we
minimize the impact of errors on local models as much
as possible. For quantum model-parallel learning, devis-
ing a strategy to partition a large-scale QML model
without compromising its functionality and reliability
presents a considerable challenge. We address these
issues by carefully designing the submodels of the QML
model, taking into account both the architecture and
the reliability of the available quantum computing
nodes. Our results demonstrate the significant poten-
tial of DQML in the current NISQ era.

Quantum Computing

Quantum computing is a revolutionary paradigm of
computation that leverages the principles of quantum
mechanics to perform complex calculations.
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Qubit

A qubit, which carries quantum information, is the fun-
damental building block of quantum computing. Due
to its unique property of superposition, it can exist in
multiple states simultaneously. The state of a single
qubit can be represented as |y) =«|0) + f|1) with
%, f € C. Here, |o|* and |p|* represent the probabilities
of measuring the qubit as |0) and |1), respectively, i.e.,
|oc|2 + |ﬁ|2 = 1. Superposition empowers quantum com-
puters with increased computational power, allowing
them to explore and process numerous potential solu-
tions to a problem in parallel. Furthermore, entangle-
ment allows two or more qubits to establish
correlations in which changes in the state of one
entangled qubit instantaneously impact the state of
the other, irrespective of the spatial separation
between them.

Quantum Gates

Quantum computation involves manipulating qubit
states with quantum gates, represented by unitary
matrices denoted as U (satisfying the conditions
U'U=UU"=1). The fundamental quantum gates
include the Pauli-X, Pauli-Y, Pauli-Z, Hadamard (H), and
controlled-X (CNOT) gates. These gates serve as foun-
dational building blocks for assembling more intricate
quantum algorithms. Among these gates, the CNOT
gate is a two-qubit gate that establishes correlations
between qubits. In addition, quantum rotation gates,
such as RX(6), RY(0), and RZ(0), provide precise manipu-
lation of quantum states through an angle 6.

Quantum Errors

Quantum computing is error-prone due to the inherent
instability of the quantum system and the immature
manufacturing of quantum computers. A quantum cir-
cuit (program) comprises a set of gates that manipulate
qguantum data, and the processed data are acquired
through quantum measurement operations. Each opera-
tion in this process can introduce errors into the quan-
tum system, potentially resulting in inaccuracies in the
quantum circuit's outcomes. In particular, errors in quan-
tum computing arise from various sources, including
qguantum state preparation, quantum gates, measure-
ment, and crosstalk. Moreover, the state of qubits can be
influenced by errors due to decoherence and dephasing.

QML

VQCs are a widely adopted approach for constructing
QML models. These models are tailored for executing
particular tasks, including optimization and classification,
by harnessing the capabilities of quantum circuits and
integrating them with classical optimization methods.
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Ansatz

A VQC, implementing a QML model, is composed of
three parts: 1) the encoding unit is responsible for con-
verting classical data into quantum data, which can be
processed by the quantum circuit. Popular encoding
techniques include angle encoding and amplitude
encoding. 2) The variational block constitutes the core
of the VQC, featuring a sequence of parameterized
quantum rotation gates. The rotation gates equipped
with trainable parameters function analogously to neu-
rons in classical neural networks. The entire variational
block is organized into layers, and a block consisting of
L layers can be represented as

U(0) =UL(0L)Up—1(0p-1)... Uy (0:) M

(3) The measurement unit involves the measure-
ment of one or more qubits to obtain the outcome cor-
responding to the input data with observable O.

Optimization

QML employs a hybrid quantum-classical approach to
train the model. Once a model on a quantum computer
processes specific input data, the classical computer
takes over to optimize the model's parameters, guided
by a predefined cost function

C = (0|UT(@)OU(0)|0). 2

This optimization can be executed through various
methods, including gradient-based approaches like the
stochastic gradient descent algorithm or non-gradient-
based techniques, such as the parameter-shift algo-
rithm. The entire training procedure in QML involves
repeating the optimization step until the parameters of
the model converge.

QFL

QFL is a sophisticated process that blends the princi-
ples of quantum computing with federated learning’s
distributed model training approach. The QFL system
consists of a central server and multiple quantum com-
puting nodes, each allocated to different clients. In this
configuration, clients maintain their data locally on
their assigned quantum computing nodes. The objec-
tive is to collaboratively train a QML model that bene-
fits from the aggregated data across all nodes, while
ensuring that each client’s private information remains
unshared and secure.® Formally, the QFL procedure for
a VQC-based QML model can be represented as
follows:

1) Initialization: Each client initiates a local model
U(0) with the same ansatz and parameters on
their respective local devices.
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2) Local training: On the i-th quantum computing
node, the client trains its individual model U(0;)
using the private dataset with several update
steps.

3) Local model submission: Each participating
client submits their updated local parameters 0
to the central server.

4) Model aggregation: The central server aggre-
gates the received local parameters from cli-
ents and integrates them into a global model
represented as 0’:22\;1 n;0;, where N is the
number of clients involved in this procedure,
and n; denotes the corresponding weight of the
i-th client.

5) Global model distribution: The updated global
parameters (' are distributed to clients for the
subsequent round of training.

6) Iteration: Repeat steps 2-5 for multiple rounds
until convergence or the desired model perfor-
mance is achieved.

Quantum Model-Parallel Learning
Quantum model parallelism is a distributed approach
in QML, especially for large-scale QML models. In this
method, a complex quantum model is partitioned into
submodels, which are then distributed across multiple
quantum computing nodes.

In such a large-scale QML model, the overall unitary
operation U(0) is partitioned into K submodels
{U1(01),Us(02),...,U(0) }. Each submodel, denoted as
U;(0;), is allocated to a distinct quantum computing
node, with 7 ranging from 1 to K. Similarly, the input
data D are divided into subsets {Dy, D», ..., D,}, cor-
responding to the submodels {U;(6,),Us(62),...,
U, (0,)} within the input layer of the QML model, where
n < K. Starting with the submodels in the input layer,
each submodel within the same layer operates inde-
pendently. The output generated by a submodel is
then transmitted to the submodel in the subsequent
layer, using either classical or quantum communication
channels. The submodel in the final layer of the QML
model generates the ultimate output that corresponds
to the specific input data. This process guarantees the
seamless flow of information and computation across
the distributed quantum system.

The design of the QFL model can be varied to align
with the specifications of the available quantum devi-
ces and data. For instance, a hybrid quantum—classical
transfer learning model is developed and deployed on
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each computing node for federated learning.* This
model utilizes a pretrained classical model to compress
classical input data into a small size, followed by
leveraging a VQC-based QML model for decision mak-
ing. In addition, a QFL approach based on quantum
data is proposed.® Furthermore, beyond a VQC, the
QFL model can be constructed using various methods.
For example, the model may consist of several layers
that incorporate a differing number of qubits.®”

A scalable QML is an instance of quantum model-
parallel learning.? The approach divides a large-scale
QML model into two distinct layers. The first layer com-
prises individual subcircuits, each designed to learn
from segments of a training instance. The second layer
then aggregates these intermediate results, enabling
further exploration of the correlations between data
segments. In addition, the approach can be imple-
mented with a single quantum computing node due to
the independence between the submodels of the large
QML model. Similarly, a quanvolutional neural network
achieves scalability by constructing quantum convolu-
tional kernels that emulate the functionality of the
classical convolutional kernel used in classical CNNs.®
This quantum kernel slides over the input data to
extract abstract features, mirroring the process in clas-
sical CNNs.

Although QFL and quantum model-parallel learning
offer benefits by integrating distributed computing
with QML, such as enhanced privacy protection and
improved model scalability, there are still several chal-
lenges that need to be addressed.

Quantum Errors

Quantum errors present a significant challenge in dis-
tributed quantum computing systems as the errors
accumulate through noisy operations and vary over
time in an unpredictable manner.

During the training process of a QML model,
parameter updates serve a dual purpose: they learn
from the training dataset and simultaneously capture
the error pattern to mitigate the impact of quantum
errors. Nevertheless, QML models cannot completely
eliminate the influence of these errors. The error pat-
tern captured by a QML model is influenced by both
the ansatz of the model and the specific quantum
device. When the level of error is sufficiently high, the
reliability of the model can be significantly compro-
mised. Furthermore, error patterns vary across different
guantum devices. Consequently, in QFL approaches,
the aggregated model suffers from varying errors that
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originate from multiple computing nodes, which can
lead to suboptimal performance. Additionally, quantum
model-parallel learning produces final outcomes based
on noisy intermediate results. As the complexity of the
model increases, errors accumulate, consequently dimin-
ishing the fidelity of the outcomes.

Error-mitigation strategies such as circuit optimiza-
tion and result postprocessing can be utilized to effec-
tively improve the reliability of each computing node.
For instance, the solution presented in the subsequent
section aims to alleviate the influence of various errors
in the overall model. It achieves this by specifically
reducing the error impact on each computing node
through the application of circuit-optimization techni-
ques. However, a comprehensive solution for error miti-
gation has not yet been fully realized. In addition,
quantum errors continuously change in unpredictable
ways. Therefore, a model trained to mitigate errors dur-
ing the training phase may not be effective against
errors encountered during testing. A potential solution
to address fluctuating quantum errors involves contin-
uously updating the model to accommodate current
guantum error conditions, but this method may lead to
considerable overhead. Alternatively, the model can be
trained while accounting for shifted errors.®

Scalability
Although distributed approaches can enhance the
scalability of QML tasks to a certain extent, scalability
remains a significant challenge in the field. For QFL,
the scale of the QML model deployed on an individual
quantum computer is constrained by the limited quan-
tum computing resources. The circuit width, for instance,
is confined by the number of qubits available on the
qguantum hardware. These qubits, serving as the register
for data processing, limit the data’s dimensionality that
the model can process. To mitigate this, a common strat-
egy is to compress data to fit the available qubit capacity.
Additionally, various encoding methods have been pro-
posed to represent data within a limited number of
qubits. However, these methods can potentially diminish
the utility of data for specific tasks or introduce signifi-
cant overhead and errors, posing a tradeoff between
data representation efficiency and the fidelity of the
information processed. Moreover, the depth of the circuit
is constrained due to the accumulation of errors and the
instability of the quantum system. Therefore, for QFL
tasks, the scale and complexity of local models remain
limited. This limitation can subsequently constrain the
performance and effectiveness of these local models.
Within quantum model-parallel learning, the scale
of the QML model is dictated by the specifications of
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available quantum devices and the requirements of cir-
cuit partitioning. The capacity of each individual quan-
tum computing node plays a critical role in determining
how the QML model should be partitioned. Excessive
partitioning of the QML model into numerous small seg-
ments can compromise its integrity. Hence, achieving an
optimal balance in the partitioning process is crucial for
the effective functioning of a large-scale QML model.

Furthermore, as the scale of the QML model
increases, the challenge of the barren plateau emerges.”®
This phenomenon, encountered in the training of large-
scale quantum neural networks, is characterized by
the gradient of the cost function becoming extremely
small. As a result, it becomes inefficient to train the
QML model. To tackle the barren plateau problem, rec-
ommended strategies include careful parameter initial-
ization and the adoption of problem-specific ansatzes.
Nevertheless, there remains a need for more advanced
solutions to effectively address this issue.

Communication

The communication channels, both classical and quan-
tum, between quantum computing nodes in a dis-
tributed QML system present challenges. In quantum
model-parallel learning, the outputs of subcircuits,
obtained through measurements, are transmitted to the
central node via classical communication channels.
However, these measurement results may not entirely
represent all the information of the intermediate states
as measurements are typically made on a single basis,
which can result in the loss of significant information.
One potential solution to this issue is the classical
shadow technique, which involves performing a series of
measurements on a quantum state and using the results
to create a “shadow” or a classical approximation of the
state. However, the overhead will rise exponentially as
the number of qubits increases. An effective strategy for
reducing measurement overhead is to reconstruct the
complete state of a single qubit and fully utilize the infor-
mation of this single qubit to scale up the size of the
problem that the model can solve." Alternatively, the
processed quantum states at the nodes could be trans-
mitted through quantum communication channels. Yet,
the development of stable and reliable quantum com-
munication channels, essential for a functional quantum
network, is still in its nascent stages. Overcoming these
communication hurdles is crucial for the efficient opera-
tion of distributed QML systems.

Hardware Diversity

Hardware diversity, particularly the various techniques
used to implement qubits, poses a significant challenge
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in distributed QML. Different quantum systems use
different physical implementations for qubits, such
as trapped ions, superconducting circuits, or topolog-
ical qubits, each with unique characteristics and
limitations. This diversity poses a challenge when
attempting to create a standardized QML model
capable of running on various quantum hardware
platforms. Furthermore, the interoperability between
diverse quantum systems becomes complex due to
differences in their control and measurement proto-
cols. This necessitates the development of adaptable
QML algorithms that can be efficiently transpiled
and optimized for various hardware architectures.
In essence, hardware diversity in distributed QML
demands a robust and flexible approach to algorithm
design and system optimization to ensure effective
and reliable performance across heterogeneous quan-
tum computing platforms.

In this section, we introduce two strategies designed
to enhance the reliability of QFL and quantum model-
parallel learning by applying an error-mitigation tech-
nique. These techniques primarily involve minimizing
gate errors by optimizing quantum circuit design. In
particular, we design the QML models to minimize the
necessity for SWAP gates according to the qubit topol-
ogy on the machines. These gates are inserted into the
circuit to enable the application of multiqubit gates to
nonadjacent qubits. Moreover, we prioritize choosing
qubits and gates with lower error rates to further
reduce the error rate of the QML model.

Based on the distinctive characteristics of QFL
and quantum model-parallel learning, various strate-
gies can be employed to design the QML model. In
the context of QFL, all participating nodes train the
QML model using the same logical ansatz. Neverthe-
less, the transpiled circuits of the model vary and
capture distinct error patterns, adversely affecting
the performance of the aggregated model. In contrast,
in the quantum model-parallel learning approach, a
large-scale QML model is partitioned into several
submodels, each potentially with a different ansatz.
The overall performance of the entire model depends
on the reliability of each submodel. Therefore, our
approach to QFL centers around designing the QML
model while taking into account the qubit topology
and quality of all the participating computing nodes.
On the contrary, for quantum model-parallel learning,
we design submodels of the entire QML model by
separately considering the qubit topology and quality
of each node involved.
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QFL

In QFL, our strategy begins with a careful selection pro-
cess, where we carefully select a subset of qubits from
each participating node. These chosen subsets are
characterized by similar qubit connectivity and rela-
tively lower error rates. Subsequently, we construct the
QML model to adapt the qubit connectivity of these
selected subsets. This method guarantees that the
transpiled QML models require the minimum number
of SWAP gate insertions across all nodes. By doing so,
we aim to minimize the impact of errors on each local
model and, consequently, reduce the disturbance in
the aggregated model caused by differing local error
patterns. This method provides a more unified and
error-resilient approach to QFL, optimizing both indi-
vidual and aggregated model performance.

For concreteness, given a QML task focused on a
binary classification task that categorizes images com-
posed of four pixels [as shown in Figure 1(a)], we con-
struct a QML model that incorporates four qubits.
There are several open source tools available for imple-
menting QML. For instance, Qiskit by IBM, PennyLane
by Xanadu, and TensorFlow Quantum by Google. These
tools provide support for QML, but currently, there
are no tools specifically designed for DQML. In our
research, we created a simulated federated learning
environment utilizing Qiskit on the IBM Quantum
platform. For this setup, three quantum computers,
ibm_lagos, ibm_perth, and ibm_nairobi, were selected
as individual quantum computing nodes to train local
QML models. These three computers have identical
qubit topologies, as depicted in Figure 1(b). From each
computer, we select a subset of qubits within which
three qubits are adjacent to a central qubit, and these
are chosen for their lower error rates, as illustrated in
the green box in Figure 1(b). Then we construct the
QML model as depicted in Figure 1(c). This specific

ansatz ensures that no noisy SWAP gates are required
during the circuit transpilation, thereby preserving
the reliability of the circuit. This QML model is then
deployed on nodes, selecting the highest-quality qubit
set that meets this topology requirement. This strategy
not only enhances the fidelity of the outcomes but also
minimizes the impact of errors on the trained model.

We assess the effectiveness of our proposed approach
by conducting the training phase on a simulator that
incorporates the noise models of specific quantum
devices. Subsequently, we test the trained model on
actual quantum devices. The trained model attained
accuracies of 93%, 96%, and 96% on the three respec-
tive nodes involved, as illustrated in Figure 1(d). For
a baseline comparison, the accuracies of a model
trained without accounting for the specific architec-
ture of the quantum devices across nodes are 90%,
86%, and 88%. The observations indicate that the
model with circuit optimization using our approach
outperforms the baseline model without circuit optimi-
zation in terms of accuracy across all computing
nodes, highlighting the efficacy of our method. More-
over, the lower accuracy achieved by the baseline indi-
cates that although the trained QML model can offset
errors to a certain degree, its effectiveness is still nota-
bly diminished by these errors. This is mainly because
the transpiled circuit of the model incurs a large vol-
ume of errors due to the extensive insertion of SWAP
gates, which are intricately eliminated in our proposed
approach.

Quantum Model-Parallel Learning

Typically, the width of a QML model is determined by
the size of the data to be processed. For instance, to
encode a data instance consisting of eight compo-
nents, a QML model would require eight qubits using
the angle-encoding method. In general, a large-scale
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FIGURE 1. QFL with error mitigation. (a) The dataset comprises two classes, with each image containing four pixels. (b) The qubit

topology of quantum computing nodes involved in the QFL environment. (c) The specifically designed QML ansatz, tailored with

the qubit topology to eliminate the need for inserting SWAP gates. (d) The test accuracy of the model on actual quantum devices.
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FIGURE 2. Quantum model-parallel learning with error mitigation. (a) A QML model is designed with two subcircuits, each con-
structed with consideration of the architecture and reliability of the involved nodes. (b) A QML model is constructed and then par-

titioned based on the number of qubits available on the nodes. (c) The test accuracy of the models implemented with different

approaches.

QML model is first built and then divided into submo-
dels according to the capacities of the available quan-
tum computing nodes.

This approach frequently necessitates inserting
additional gates and can compromise the correlation
within data instances, leading to a significant reduction
in the model's reliability. Conversely, our approach
entails designing the submodels while considering
both the qubit topology and the quality of resources
available on the quantum computing nodes. These
submodels are then integrated into a complete QML
model. This strategy aims to preserve the fidelity of the
output of each submodel, thereby enhancing the over-
all performance of the model.

For example, we consider a QML-based classifica-
tion task focused on handwritten digits O and 1, where
images from the Modified National Institute of Stand-
ards and Technology dataset are downscaled to eight
components using the principal component analysis
method. The quantum system in this scenario com-
prises two quantum computing nodes: ibm_lagos and
ibm_perth, with their qubit topology illustrated in
Figure 2. Based on the characteristics of these two
quantum computing nodes, we design a QML model
consisting of two submodels: the first subcircuit, con-
sisting of four qubits, processes the first half of the
image, while the second subcircuit, encompassing five
qubits, handles the second half of the image and inte-
grates the processed results from the first half. The
complete QML model is depicted in Figure 2(a). As a
baseline for comparison, another method implemented
for this task involves partitioning the QML model based
solely on the resource capacity of the computing
nodes. For processing data instances with eight values,
the first subcircuit is constructed using all the qubits
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(seven qubits) of one node to process seven compo-
nents of the data instance. Meanwhile, the second sub-
circuit utilizes two qubits to process the remaining
component and to integrate the intermediate results,
as shown in Figure 2(b).

In Figure 2(c), we depict the accuracy of two QML
models implemented using distinct methods: one
with circuit optimization achieving 96% accuracy and
another without optimization achieving 69% accuracy.
It's clear that the optimized model exhibits significantly
superior accuracy compared to the baseline model
without circuit optimization. There are three main rea-
sons for the observed performance difference. First,
our proposed method for designing subcircuits using
circuit-optimization techniques eliminates the need for
noisy SWAP gates, thereby reducing the overall error
rate. Second, data instances are partitioned evenly in
our approach. This method preserves coherence within
each data segment and ensures that the final result is
evenly influenced by both parts. In contrast, the base-
line method partitions the data unevenly, leading to a
biased final result. Third, although the baseline method
can also be optimized to minimize additional SWAP
gates, the first submodel in this approach still includes
many gates necessary for the model's functioning. Given
that the fidelity of a quantum circuit exponentially
decreases with the increasing number of gates, the
larger size of the subcircuit in the baseline method likely
results in significantly lower fidelity. Therefore, care-
fully partitioning the model across available computing
nodes is advantageous for maintaining higher fidelity.

In this article, we explore two methodologies within
DQML: QFL and quantum model-parallel learning.
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A significant challenge in distributed QML is managing
quantum errors. To address this, we introduce an error-
resilient approach to QFL and quantum model-parallel
learning, employing an ansatz construction based
on qubit topology. Empirical evaluations highlight the
effectiveness of our solutions, underscoring the poten-
tial of distributed QML methodologies.
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